Oxotrichlorobis(alkylcyanide)tungsten(V) Complexes; Precursors to Schiff Base Complexes

CHARLES A. McAULIFFE, ARLYN C. RICE

Department of Chemistry, University of Manchester, Institute of Science and Technology, Manchester M60 IQD, U.K.

and WILLIAM E. HILL

Department of Chemistry, Auburn University, Auburn, Ala., 36830, U.S.A.

Received May 7, 1980

Preparative routes to a number of high valent molybdenum and tungsten complexes are extremely difficult when simple highly insoluble salts, e.g. MoCl₃, are used. However, some donor solvents allow the isolation of soluble adducts which afford good starting materials for the preparation of a range of metal complexes. Thus we have previously found that MOCl₃(THF)₂ (M = Mo, W) reacts with phosphines and arsines [1], thioethers [2], Schiff's bases containing O-, S-, and N-donors [3, 4], and quinolines [5]. Similarly WOCl3 (MeCN)2 has been found to have utility as a starting material and was first prepared by direct reaction of acetonitrile with WOCl₃ [6]. We wish to report an alternative preparative method here and the characterization of WOCl3- $(RCN)_2$ $(R = CH_3, C_2H_5, C_3H_7).$

Experimental

To WOCl₃(THF)₂ [7] (10 g), in a 3-necked 500 cm³ flask under a dinitrogen atmosphere, was added freshly distilled acetonitrile (50 cm³) and the resulting solution was refluxed for 2 h. The solution

was then concentrated to 30 cm³, cooled and a small amount of diethyl ether was added to induce precipitation. The product was collected by vacuum filtration using a Schlenk apparatus, washed with diethyl ether (10 cm³) and dried *in vacuo*. The yield was quantitative and the product was stored in dry N_2 ampoules. A similar method was used to prepare $WOCl_3(RCN)_2$ ($R = C_2H_5$, C_3H_7).

Results and Discussion

The deeply coloured microcrystalline complexes, WOCl₃(RCN)₂ (R = CH₃, C₂H₅, C₃H₇) (Table I) are all extremely soluble in alkylcyanides but insoluble in toluene or dichloromethane; they appear to be sensitive to moist air in the order n-PrCN > EtCN > MeCN. The WOCl₃(RCN)₂ (R = Me, Et) are indefinitely stable when stored in ampoules under N₂, but this method of storage did not inhibit the decomposition of WOCl₃ (n-PrCN)₂ to a dark blue tar within a few days. Sufficient solubility in dichloromethane allowed EPR spectra to be obtained. These spectra, see Fig. 1, show one broad central line. The reflec-

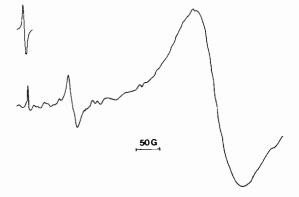


Fig. 1. ERP spectra.

TABLE I. Colour, Analytical Results, EPR, IR and Diffuse Reflectance Spectra of WOCl3(RCN)2 Complexes.

Compound	colour	Analysis Found (calcd.)			EPR	E_{max} (cm ⁻¹)	IR (cm ⁻¹)
		%C	%H	%N	g-value		
WOCl ₃ (CH ₃ CN) ₂	purple	12.4(12.4)	1.5(1.5)	7.3(7.2)	1.75	23,800	980
						17, 241	2270
WOG ₃ (EtCN) ₂	purple	17.3(17.3)	2.4(2.4)	6.9(6.7)	1.75	23,250	970
						18,939	2270
$WOCl_3(Pr^nCN)_2$	purple	21.4(21.6)	1.4(1.6)	6.1(6.3)	1.76	_	980
							2260
WOCI(salphen)	dark green	43.5(43.7)	2.9(2.6)	5.0(5.1)	1.76	23,520	1605
						16,949	980
							318

tance spectra exhibit several ill-defined absorptions, one at 17,000–19,000 cm⁻¹, retentatively assigned to $^2B_2 \rightarrow ^2B_1$. The infrared show $\nu(W=O)$ at 970–980 cm⁻¹ and coordinated nitrile is indicated by $\nu(CN)$ at ~2270 cm⁻¹.

It is thought that these complexes will serve as convenient starting materials for the preparation of other oxotungsten(V) complexes. For example, we have been able to isolate [WOCl(salphen)] {salphen is the dianion of the tetradentate N2O2 Schiff base ophenylenebis(salicylideneimine)}, by the reaction of WOCl₃(MeCN)₂ with H₂salphen in freshly distilled acetonitrile. This complex (Table I) appears to be structurally similar to its molybdenum(V) analogue [3], exhibiting $\nu(CN)$ at 1605 cm⁻¹, shifted to lower energy from that in H₂salphen, 1615 cm⁻¹, and thus indicative of anionic bonding of salphen [4]. The ν (W=O) at 970 cm⁻¹ may be compared with ν (Mo= O) at 948 cm⁻¹ in [MoOCl(salphen)] [3] and suggests stronger metal-oxygen bonding in the tungsten complex. A single $\nu(W-Cl)$ band is observed at 318

cm $^{-1}$, almost identical to that in the [MoOCl-(salphen)] compound. This insensitivity of the ν (M–Cl) as M changes from molybdenum to tungsten in [MoCl(salphen)] is in keeping with the cis structure proposed for the molybdenum complex [3].

References

- C. A. McAuliffe, B. J. Sayle and W. Levason, J. Chem. Soc. Dalton, 1177 (1976); ibid., 2055 (1977).
- C. A. McAuliffe and B. J. Sayle, *Inorg. Chim. Acta*, 30, 35 (1978).
- 3 J. R. Dilworth, C. A. McAuliffe and B. J. Sayle, J. Chem. Soc. Dalton, 849 (1977).
- 4 C. A. McAuliffe, F. P. McCullough, M. J. Parrott, C. A. Rice, B. J. Sayle and W. Levason, J. Chem. Soc. Dalton, 1792 (1977).
- 5 C. A. McAuliffe, A. Hosseiny and F. P. McCullough, Inorg. Chim. Acta, 33, 5 (1979).
- 6 G. R. Beilharz, D. Scott and A. G. Wedd, Aust. J. Chem., 29, 2167 (1976).
- 7 G. W. A. Fowles and J. L. Frost, J. Chem. Soc. (A), 1631 (1966).